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Power Spectrum of MSK-Type Modulations in the
Presence of Data Imbalance

M. K. Simon,1 P. Arabshahi,1 L. Lam,1 and T.-Y. Yan1

Using the amplitude-modulation pulse (AMP) representation of continuous-
phase modulation (CPM) introduced more than a decade ago by Laurent, the power
spectral density (PSD) of minimum-shift-keying (MSK)-type modulations (modu-
lation index equal to one-half) is computed in the presence of data imbalance. The
advantage of this technique is that closed-form expressions can be obtained that
clearly elucidate the partitioning of the spectrum into components due to the effec-
tive AMP pulse shapes and those due to the AMP sequence correlations. As such,
these expressions give insight into the nature of the PSD distortion produced by
the imbalance, i.e., a tilt in the main lobe and a relative unbalance between the
upper and lower side-lobe levels caused by the correlation between the in-phase (I)
and quadrature-phase (Q) components of the complex AMP data sequences and
the correlation between the sequences themselves. It is demonstrated that data
imbalance does not change the rate at which the side lobes roll off. It also is shown
that, for all practical purposes, the PSD can be computed based on a two-pulse
stream AMP approximation.

I. Introduction

It is well-known that continuous-phase modulation (CPM) is a modulation scheme that in addition
to being bandwidth efficient offers the advantage of being constant envelope, the latter being significant
in systems employing nonlinear amplification. One class of CPM is the group of so-called minimum-
shift-keying (MSK)-type modulations that all have modulation index h = 0.5 and are distinguished from
one another by the shape of the frequency pulse that modulates the transmitted carrier. MSK itself
corresponds to a rectangular frequency pulse of duration equal to a bit time, Tb. The reason this group is
of interest is that it lends itself to an in-phase–quadrature-phase (I–Q) form of receiver implementation.
The evaluation of the power spectral density (PSD) of conventional (corresponding to a balanced random
binary data input) angle and frequency modulations has been described in many places in the literature,
e.g., [1–6], and specific results have been documented for a variety of popular full- and partial-response
MSK-type schemes, including MSK itself, Gaussian MSK (GMSK), and tamed-frequency modulation
(TFM).

In addition to pulse shaping, the presence of data imbalance (unequal probabilities for the +1’s and
−1’s) can have a profound effect on the PSD of digital modulations, so much so that standards committees
such as the Consultative Committee for Space Data Systems (CCSDS) have included in their specifications
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a limit on the amount of imbalance that can be tolerated [12]. For linear modulations such as amplitude
modulation of a binary pulse stream on a carrier, the effect of data imbalance on the PSD is well
documented, e.g., [7, Chapter 2], manifesting itself in the addition of a discrete spectral component
to the overall PSD with no effect on the shape of the continuous component [7]. For phase (or frequency)
modulation, the evaluation of the PSD is considerably more complex, and the effect of data imbalance
is quite different in terms of its impact on both the discrete and continuous spectral components of
the modulator output. Because of these important differences and their significance in relation to the
specification on the tolerable amount of data imbalance, a study of the PSD of MSK-type modulations
(including GMSK as a specific case of high interest) in the presence of such imbalance is warranted.

Of the many techniques available for evaluating the power spectral density of CPM schemes [1–4], the
one deemed most convenient by the authors, particularly for MSK-type modulations with data imbalance,
is that which results from a CPM signal representation introduced more than a decade ago by Laurent
[4]. In particular, Laurent described an exact representation for CPM in the form of a superposition
of a number of time-/phase-shifted amplitude-modulation pulse (AMP) streams. The number of such
streams was dependent on the partial-response nature of the modulation as described by the duration,
L (in symbols), of the frequency pulse that characterizes the CPM. For binary pulse streams,2 the number
of pulse streams in the AMP representation is 2L−1. Laurent’s primary motivation for presenting such a
representation was that it allowed for easy evaluation of the autocorrelation and PSD of such modulations,
particularly for half-integer index modulations, i.e., ones whose frequency-modulation index was of the
form h = n + 1/2, n integer, which includes the case of interest here (i.e., n = 0). Specifically, when
the input binary data were random and balanced, the complex data sequences that characterize each of
the 2L−1 AMP components are themselves uncorrelated and, furthermore, are uncorrelated with each
other. As such, the PSD of the composite CPM waveform is equal to the sum of the PSDs of the AMP
components, each of which is computed by conventional PSD evaluation techniques for binary amplitude
(unit magnitude) modulation of a carrier with a complex independent identically distributed (i.i.d.) data
sequence.

In this article, we expand upon the PSD evaluation found in Laurent to include the case of input data
imbalance. Specifically, we shall show that, because of the presence of data imbalance, the effective com-
plex data sequences that typify each AMP pulse stream are now themselves correlated and, furthermore,
are correlated with each other. The correlation properties of each of these sequences resemble those of a
first-order Markov process and, hence, the PSD for each contains a factor due to the pulse shape as well
as a factor due to the sequence correlation. Likewise, the cross-correlation properties of the sequences
contain pulse shape and correlation factors.

We begin the article by reviewing the Laurent representation for MSK-type modulations. Following
this, we present the generic result for the PSD of a modulation composed of a group of correlated data
pulse trains each of which contains its own real pulse shape and complex data stream. Next, we apply this
generic PSD formula first to MSK and then to GMSK. Since MSK is a full-response scheme, its Laurent
representation has only a single pulse stream and, thus, the PSD has no cross-correlation components.
Since GMSK can be approximated by a 4Tb-wide frequency pulse at the output of the Gaussian filter,
it is a partial-response scheme with a Laurent representation having 2L−1 = 8 pulse streams. However,
Kaleh [9] explicitly showed that, for GMSK with a bandwidth-bit time product BTb = 0.25 and a
4Tb-wide approximation of the Gaussian pulse, i.e., L = 4, a two-pulse-stream approximation is for all
practical purposes (the fraction of energy in the neglected six pulse streams is 2.63× 10−5) exact. Thus,
in evaluating the PSD of GMSK, we shall employ this two-pulse-stream approximation of the Laurent
representation.

2 The work later was extended to the M -ary case by Mengali and Morelli [8].
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II. Laurent Representation of MSK-Type Modulations

The classical representation of an MSK-type of CPM modulation has the form

s(t) =
√

2Eb
Tb

cos (ωct+ φ (t,ααα) + φ0) , nTb ≤ t ≤ (n+ 1)Tb (1)

where Eb and Tb, respectively, denote the energy and duration of a bit (P = Eb/Tb is the signal power),
ωc = 2πfc is the radian carrier frequency, ααα = (· · · , α−2, α−1, α0, α1, α2, . . .) is the i.i.d. binary (±1) data
sequence, φ (t,ααα) is the equivalent phase-modulation process, which is expressible in the form of a digital
pulse stream,

φ (t,ααα) = π
∑
i≤n

αiq (t− iTb) (2)

and q(t) =
∫ t
−∞ g (τ) dτ is the normalized phase-smoothing response that defines how the underlying

phase, παi, evolves with time. In general, q(t) extends over infinite time and satisfies the following:

q(t) =


0, t ≤ 0

1
2
, t ≥ LTb

(3)

In what follows, it will be convenient to deal with the normalized (unit-amplitude) complex envelope of
s(t), i.e., the complex baseband signal S̃(t) defined by the relation

S̃(t) = exp {jφ (t,ααα)} , nTb ≤ t ≤ (n+ 1)Tb (4)

Define the generalized phase-pulse function by

Ψ(t) =

 πq(t), 0 ≤ t ≤ LTb
π

2
[1− 2q (t− LTb)] , LTb ≤ t

(5)

which is obtained by taking the nonconstant part of q(t), i.e., the part that exists in the interval
0 ≤ t ≤ LTb, and reflecting it about the t = LTb axis. Thus, in view of Eq. (5), Ψ(t) is a wave-
form that is nonzero in the interval 0 ≤ t ≤ 2LTb and symmetric around t = LTb. The importance of
Ψ(t) is that it allows definition of the following functions, which become an integral part of the AMP
representation of GMSK:

S0(t) = sin Ψ(t) (6)

Sn(t) = S0(t+ nTb) = sin Ψ(t+ nTb) (7)

Next one defines a series of pulse shapes Ci (t) , i = 1, 2, · · · , 2L−1, each made up of L-fold distinct
products of the Sn (t)’s. For example, for GMSK with L = 4, the 2L−1 = 8 distinct pulse shapes are
[4, Eq. (11)]
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C0(t) = S0(t)S1(t)S2(t)S3(t), 0 ≤ t ≤ 5Tb

C1(t) = S0(t)S2(t)S3(t)S5(t), 0 ≤ t ≤ 3Tb

C2(t) = S0(t)S1(t)S3(t)S6(t), 0 ≤ t ≤ 2Tb

C3(t) = S0(t)S3(t)S5(t)S6(t), 0 ≤ t ≤ 2Tb

C4(t) = S0(t)S1(t)S2(t)S7(t), 0 ≤ t ≤ Tb

C5(t) = S0(t)S2(t)S5(t)S7(t), 0 ≤ t ≤ Tb

C6(t) = S0(t)S1(t)S6(t)S7(t), 0 ≤ t ≤ Tb

C7(t) = S0(t)S5(t)S6(t)S7(t), 0 ≤ t ≤ Tb



(8)

each of which is a product of the basic generalized pulse shape S0(t) and L − 1 = 3 other time shifts of
S0(t). Finally, then the generic AMP form for the complex envelope of MSK-type signals is [4]

S̃(t) =
2L−1−1∑
K=0

[ ∞∑
n=−∞

jAK,nCK (t− nTb)
]

∆=
2L−1−1∑
K=0

[ ∞∑
n=−∞

ãK,nCK (t− nTb)
]

(9)

which results in the real signal

s(t) =
√

2Eb
Tb

Re
{
S̃(t)

}
=
√

2Eb
Tb

2L−1−1∑
K=0

[ ∞∑
n=−∞

CK (t− nTb) cos
(
ωct+

π

2
AK,n

)]
(10)

i.e., a superposition of 2L−1 amplitude-/phase-modulated pulse streams, some of which contain overlap-
ping pulses. Also in Eq. (10), ãK,n

4= jAK,n = ej(π/2)AK,n is the equivalent complex (unit-amplitude)
data symbol for the nth transmitted pulse in the Kth stream whose phase (π/2)AK,n depends solely on
the past information data sequence ααα in a manner described in [4], namely,

AK,n =
n∑

l=−∞
αl −

L−1∑
i=1

αn−iβK,i (11)

where {βK,i} are the L coefficients (0, 1) in the binary representation of the integerK
(
0 ≤ K ≤ 2L−1 − 1

)
.

Since, from Eq. (11), AK,n alternates (with n) between even and odd integer values, then ãK,n likewise
alternates between being purely real (±1) and purely imaginary (±j) values. Thus, as previously men-
tioned, for each K, {ãK,n} is a binary amplitude complex data sequence with unit magnitude.

For MSK modulation (L = 1), there is only a single pulse stream with pulse shape and data phase
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C0(t) = S0 (t) = sin
πt

2Tb
, 0 ≤ t ≤ 2Tb

A0,n =
n∑

l=−∞
αl


(12)

Thus, the equivalent data symbol {ã0,n} satisfies the differential encoding relationship

ã0,n
4= ej(π/2)A0,n = jαnã0,n−1 ⇒ ã0,2n ∈ {j,−j} , ã0,2n+1 ∈ {1,−1} (13)

For GMSK, the dominant term is the pulse stream corresponding to C0 (t) since its duration is the
longest (at least 2Tb longer than any other pulse component) and it also conveys the most significant part
of the total energy of the signal. The next most significant term would be the pulse stream corresponding
to C1(t), which contains virtually all the remaining signal energy. Thus, as previously alluded to, it is
sufficient to consider only the first two pulse streams in Eq. (9) and, hence, for all practical purposes, we
may “exactly” describe GMSK by the complex signal

S̃(t) =
∞∑

n=−∞
ã0,nC0 (t− nTb) +

∞∑
n=−∞

ã1,nC1 (t− nTb) (14)

where it can be shown that the equivalent complex data symbols satisfy the relations [9]3

ã0,n
4= ej(π/2)A0,n = jαnã0,n−1 ⇒ ã0,2n ∈ {j,−j} , ã0,2n+1 ∈ {1,−1}

ã1,n
4= ej(π/2)A1,n = jαnã0,n−2 ⇒ ã1,2n ∈ {1,−1} , ã1,2n+1 ∈ {j,−j}

 (15)

Thus, in terms of the real GMSK signal s(t), we can view it as being composed of the sum of two pulse-
shaped offset QPSK-type signals with pulse shapes corresponding to C0(t) and C1(t) and I, Q ±1 data-
symbol (Ts = 2Tb in duration) sequences, respectively, corresponding to

a0,2n = Im {ã0,2n} , b0,2n+1 = Re {ã0,2n+1}

a1,2n = Re {ã1,2n} , b1,2n+1 = Im {ã1,2n+1}

 (16)

That is,

s(t) =
√

2Eb
Tb

[ ∞∑
n=−∞

a0,2n+1C0 (t− (2n+ 1)Tb) cosωct −
∞∑

n=−∞
b0,2nC0 (t− 2nTb) sinωct

+
∞∑

n=−∞
a1,2nC1 (t− 2nTb) cosωct −

∞∑
n=−∞

b1,2n+1C1 (t− (2n+ 1)Tb) sinωct

]
(17)

3 Note that the sequence properties of the first sequence in Eq. (15) are identical to those of MSK.
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For random i.i.d. balanced input data, ααα, Kaleh [9] shows that the effective data sequences for the two
symbol streams as defined in Eq. (16) each has uncorrelated symbols and, furthermore, the two sequences
are uncorrelated with each other. As we shall see in a later section, when the data are random i.i.d. but
unbalanced, these uncorrelated properties no longer hold.

III. A Generic Expression for the PSD of a Sum of Random Pulse Trains With
Complex Data Symbols

Consider finding the PSD of a complex signal S̃ (t) of the form in Eq. (9). The traditional method
of evaluating such a PSD is first to find the autocorrelation function of S̃ (t), namely, RS̃ (t, t+ τ) =

E
{
S̃ (t) S̃∗ (t+ τ)

}
, then to time average to remove the cyclostationary property, and finally to take the

Fourier transform of the result, i.e.,

SS̃ (f) = F {〈RS̃ (t, t+ τ)〉} (18)

By a straightforward extension of the results in [7, Chapter 2], the following result can be obtained:

SS̃ (f) =
2L−1−1∑
i=0

Sii (f) +
2L−1−1∑
i=0

i<j

2L−1−1∑
j=0

Sji (f) (19)

where

Sii (f) = Sãi (f)Spi (f) (20)

with

Sãi (f) =
∞∑

l=−∞
Rãi (l) e−j2πflTb , Rãi (l) = E

{
ãi,kã

∗
i,k+l

}

Spi (f) =
1
Tb
|Pi (f)|2 , Pi (f) 4= F {Ci (t)}


(21)

and

Sji (f) = 2 Re
{
Sãji (f)Spji (f)

}
(22)

with

Sãji (f) =
∞∑

l=−∞
Rãji (l) e−j2πflTb , Rãji (l) = E

{
ãj,kã

∗
i,k+l

}

Spji (f) =
1
Tb
Pi (f)P ∗j (f) , Pi (f) 4= F {Ci (t)}


(23)
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Clearly then, the evaluation of the PSD involves finding the Fourier transform of the various pulse shapes
in the AMP representation and both the autocorrelation and cross-correlation of the equivalent complex
data sequences.

IV. Cross-Correlation Properties of the Equivalent Complex Data Symbols and
Evaluation of the PSD

A. MSK Modulation

For MSK, the equivalent complex data symbols {ã0,n} are defined in terms of the actual input data
symbols {αn} by the iterative relation in Eq. (13). Suppose that {αn} characterizes a random i.i.d.
unbalanced source, where

Pr {αn = 1} = 1− p

Pr {αn = −1} = p

 (24)

with 0 ≤ p ≤ 1. Then, it is straightforward to show that {ã0,n} is a first-order Markov source, and as
such, it is balanced, i.e.,

Pr {ã0,n = j} =
1
2
, Pr {ã0,n = −j} =

1
2

for n even

Pr {ã0,n = 1} =
1
2
, Pr {ã0,n = −1} =

1
2

for n odd

 (25)

and thus E {ã0,n} = 0. However, while the differential encoding operation converts the unbalanced
random i.i.d. source to a balanced source,4 the symbols of the latter are now correlated. Using the
defining relation for {ã0,n}, it is straightforward to show that

Rã0 (l) 4= E
{
ã0,nã

∗
0,n+l

}
= [−j (1− 2p)]l , l integer, Rã0 (−l) = R∗ã0

(l) (26)

i.e., {ã0,n} behaves analogously to a first-order Markov source with transition probability equal to p. The
discrete Fourier transform of Eq. (26) as needed in Eq. (21) is obtained as

Sã0 (f) =
∞∑

l=−∞
Rã0 (l) e−j2πflTb =

∞∑
l=−∞

[−j (1− 2p)]l e−j2πflTb

= 1 + 2
∞∑

l=−∞
(1− 2p)l e−j2πl(fTb+1/4) (27)

Using a well-known result [10] for the series in Eq. (27), namely,

∞∑
k=1

ak cos kθ =
a cos θ − a2

1− 2a cos θ + a2
(28)

4 The implication of a balanced equivalent complex symbol stream for AMP representation of MSK is that no discrete
spectrum will be generated.

7



we obtain the closed-form result

Sã0 (f) =
4p (1− p)

2 (1− 2p) (1 + sin 2πfTb) + 4p2
(29)

Finally, taking the Fourier transform of the pulse shape in Eq. (12) and substituting its squared magnitude
in Eq. (21), the complex baseband PSD of MSK with unbalanced data input becomes

Sm̃ (f ; p) = Tb
16
π2

cos2 2πfTb
(1− 16f2T 2

b )2

[
4p (1− p)

2 (1− 2p) (1 + sin 2πfTb) + 4p2

]
(30)

Note that because of the presence of the term sin 2πfTb in the denominator of Eq. (29), the equivalent
baseband spectrum of Eq. (30) is not symmetric around f = 0. Since the PSD of the true MSK signal as
described by Eq. (1) is related to the equivalent baseband PSD by

Ss (f ; p) =
1
4

[Sm̃ (f + fc; p) + Sm̃ (−f + fc; p)] (31)

then, equivalently, the PSD of Eq. (31) will have a tilt around the carrier. And since, also from Eq. (30),
we have

Sm̃ (f ; 1− p) = Sm̃ (−f ; p) (32)

then the tilt of the PSD of Eq. (31) reverses when the probability distribution of the input data is reversed.

Finally, for p = 1/2, i.e., balanced random data input, the factor in brackets in Eq. (30) becomes equal
to unity, and one obtains the well-known PSD of conventional MSK, namely,

SMSK (f) = Tb
16
π2

cos2 2πfTb
(1− 16f2T 2

b )2 (33)

which is symmetrical around the origin.

B. GMSK Modulation

For GMSK, the equivalent complex data symbols {ã0,n} are defined in terms of the actual input data
symbols {αn} by the iterative relations in Eq. (15). Suppose that {αn} again characterizes a random
i.i.d. unbalanced source as described by Eq. (24); then the autocorrelation function of the first equivalent
symbol stream is given by Eq. (26) and its associated discrete Fourier transform by Eq. (29). Thus, the
PSD of the first component of the AMP representation of GMSK is

S00 (f ; p) =
1
Tb
|P0 (f)|2

[
4p (1− p)

2 (1− 2p) (1 + sin 2πfTb) + 4p2

]
, P0 (f) 4= F {C0 (t)} (34)

with C0 (t) defined in Eq. (8) and evaluated from Eqs. (5), (6), and (7) using for the phase pulse shape
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q

(
t+

LTb
2

)
=

1
2

+
1

2T

[(
t− Tb

2

)
Q

(
2πB√
ln 2

(
t− Tb

2

))
−
(
t+

Tb
2

)
Q

(
2πB√
ln 2

(
t+

Tb
2

))]

− 1√
2π

(√
ln 2

2πB

)[
exp

{
−1

2

[
2πB√
ln 2

(
t− Tb

2

)]2
}
− exp

{
−1

2

[
2πB√
ln 2

(
t+

Tb
2

)]2
}]

,

0 ≤ t ≤ LTb (35)

As mentioned in the introduction, the case of interest here is where BTb = 0.25 and L = 4 so that a
two-pulse-stream approximation is sufficient.

Following a procedure similar to that used to derive Eq. (26), it can be shown that the autocorrelation
function of the second equivalent symbol stream (which is also balanced and, therefore, has zero mean)
is given by

Rã1 (l) 4= E
{
ã1,nã

∗
1,n+l

}
=


1, l = 0

−j (1− 2p)3
, l = 1 Rã1 (−l) = R∗ã1

(l)
[−j (1− 2p)]l , l ≥ 2

(36)

with discrete Fourier transform

Sã1 (f) =
∞∑

l=−∞
Rã1 (l) e−j2πflTb = Sã0 (f) + 8p (1− 2p) (1− p) sin 2πfTb (37)

Thus, the PSD of the second component of the AMP representation of GMSK is

S11 (f ; p) =
1
Tb
|P1 (f)|2 4p (1− p)

[
1

2 (1− 2p) (1 + sin 2πfTb) + 4p2
− 2 (1− 2p) sin 2πfTb

]

P1 (f) 4= F {C1 (t)}

 (38)

Note again that, because of the presence of the term sin 2πfTb in the denominator of Eq. (38), the
equivalent baseband spectrum is not symmetric around f = 0.

What remains is to compute the cross-correlation function of the two equivalent complex symbol
streams. Following the same procedure as that for obtaining the autocorrelation function of the individual
pulse streams, we obtain

Rã10 (l) 4= E
{
ã1,nã

∗
0,n+l

}
=


[−j (1− 2p)]l+1

, l ≥ 0
(1− 2p)2

, l = −1, Rã01 (−l) = R∗ã10
(l)

[j (1− 2p)]−(l+1)
, l ≤ −2

(39)

with discrete Fourier transform

Sã10 (f) =
∞∑

l=−∞
Rã10 (l) e−j2πflTb = ej2πfTb [Sã0 (f)− 4p (1− p)] (40)
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Thus, the cross-spectrum of m̃(t)is, from Eq. (22),

S10 (f ; p) = 8p (1− p) Re
{[

1
2 (1− 2p) (1 + sin 2πfTb) + 4p2

− 1
]
ej2πfTb

1
Tb
P0 (f)P ∗1 (f)

}
(41)

which is also not symmetric around f = 0. Finally, the complex baseband PSD of GMSK (based on the
two-pulse-stream AMP approximation) with unbalanced data input becomes

Sm̃ (f ; p) = S00 (f ; p) + S11 (f ; p) + S10 (f ; p) (42)

where S00 (f ; p) , S11 (f ; p) and S10 (f ; p) are defined in Eq. (34) and Eqs. (38) and (41), respectively.

C. Other Pulse Shapes (Raised-Cosine Modulation)

As previously implied, one of the nice features about using the Laurent AMP representation of MSK-
type CPM to evaluate its PSD is that this representation clearly allows for isolation of the spectral factor
due to pulse shaping and of that due to data-symbol correlation. In fact, the results of Section IV.B
are really quite general in that they apply to any partial-response modulation with L = 4 if one does
not restrict oneself to the phase pulse shape of Eq. (35). In fact, the restriction on the duration of
the frequency pulse, i.e., the value of L, also is not an issue. The reason behind this already was
intimated when we pointed out the fact that the first AMP equivalent data-symbol sequence for GMSK
had identical correlation properties to the single-data-symbol sequence that represents MSK. In a more
general context, the following statements can be made about the correlation properties of the equivalent
data-symbol sequences in the AMP representation.

Consider two CPM modulation schemes with different amounts of partial response, i.e., one is charac-
terized by a frequency pulse of duration L1Tb and the other by a frequency pulse of duration L2Tb (assume
L2 > L1 for convenience). Note that the CPM schemes need not have the same frequency pulse shape.
Then, from the construction procedure used to derive the equivalent data-symbol sequences of the AMP
representation from the true input-data sequence, it is straightforward to show that the first 2L1−1 of the
2L2−1 sequences that represent the second modulation have properties identical to those of the 2L1−1 that
completely represent the first modulation. This nicety allows one to consider, for example, a particular
class of MSK-type modulations, all having the same frequency-pulse shape but different durations (i.e.,
different amounts of partial response) and, assuming that a small subset of the total number of AMP
pulse streams is sufficient to characterize the PSD, to have to compute the spectral shaping due to the
sequence correlation only one time.

A popular class of MSK-type CPM modulations is that corresponding to a raised-cosine (RC) frequency
pulse. For this class (originally referred to as sinusoidal-frequency-shift keying (SFSK) by Amoroso [11]),
the frequency pulse is given by

g(t) =


1

2LTb

[
1− cos

(
2πt
LTb

)]
, 0 ≤ t ≤ LTb

0, otherwise

(43)

and for L = 1 has a spectral roll-off that varies as f−6 (as opposed to an f−4 spectral roll-off for MSK).
Assuming a two-AMP pulse representation, the PSD for this class (L as a parameter) of modulations
would be approximately given by the combination of Eqs. (34), (38), (41), and (42) for L ≥ 2 or exactly
by Eq. (34) for L = 1.
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Before proceeding with numerical results, we point out that, with some additional computation (which
would be warranted if one were interested in very low PSD levels), the PSD evaluation procedure discussed
above can be extended to include more than just the first two (dominant) AMP pulse streams. In fact,
the results of Section III are quite general and, analogous to Eqs. (26), (36), and (39), all one needs to
compute are the autocorrelation and cross-correlation functions of the remainder of the equivalent data
symbol streams. For L = 4, these remaining six pulse streams are characterized by [9]

ã2,n
4= (jαn−1) (jαn) ã0,n−3

ã3,n
4= jαnã0,n−3

ã4,n
4= (jαn−2) (jαn−1) (jαn) ã0,n−4

ã5,n
4= (jαn−2) (jαn) ã0,n−4

ã6,n
4= (jαn−1) (jαn) ã0,n−4

ã7,n
4= jαnã0,n−4



(44)

V. Precoded MSK-Type Modulations

Conventional I–Q-type receivers for MSK-type modulations suffer a small performance penalty due to
the inherent differential encoding operation (see, for example, Eq. (13) for MSK itself) performed at the
transmitter and the attendant requirement for differential decoding at the receiver. A simple fix to this
problem is to precode the input data with a differential decoder [7, Chapter 10], which in effect cancels
the differential encoding operation at the transmitter and eliminates the need for differential decoding
at the receiver. From a spectral standpoint, this precoding operation has no effect on the PSD of the
transmitted signal when the input data are balanced. However, when the input data are unbalanced, as
in the case of interest in this article, the precoder has a definite effect on the transmitted signal PSD. To
see how this comes about, we first shall consider the simple case of MSK itself.

Suppose that prior to phase modulation of the carrier the input data stream ααα = (· · · , α−2, α−1, α0, α1,
α2, · · ·) first is converted to a complex data stream via

α′n = αnj
n (45)

and then passed through a differential decoder that satisfies the recursion relation

βn = −jα′n
(
α′n−1

)∗ (46)

where βn denotes the complex binary output of the decoder (input to the MSK modulator) in the nth
bit interval. Substituting Eq. (45) into Eq. (46), we see that

βn = −j (αnjn)
(
αn−1 (−j)n−1

)
= αnαn−1 (47)
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which is a conventional differential decoding of the true input data bits. Since the cascade of the differential
encoder of Eq. (13) and the differential decoder of Eq. (46) produces a unity gain transmission path, i.e.,

βn = −jã0,nã
∗
0,n−1 = −j (jαnã0,n−1) ã∗0,n−1 = αn |ã0,n−1|2 = αn (48)

then one can deduce that, for an input binary complex i.i.d. bit sequence ααα′ = (. . . , α′−2, α
′
−1, α

′
0, α
′
1,

α′2, . . .) as in Eq. (45), precoded MSK using the precoder (differential decoder) in Eq. (46) is exactly
the same as a Laurent representation of MSK [a single complex symbol-pulse stream with half-sinusoidal
pulse shape as in Eq. (13)] with the same input data sequence, i.e., {ã0,n} = ααα′. This equivalence is
illustrated in Fig. 1.

DELAY
Tb

MSK
MODULATOR

DIFFERENTIAL DECODER

{bn 
} s (t ){an 

}

¥
å

n = - ¥
an' sin

p (t — nTb )

2Tb

{an 
} s (t )

{ j n
 
}

{an 
}' S (t )

~

pt
2Tb

sin

PULSE
SHAPING

e 
j 2pf tc

Re{  }

Fig. 1.  Equivalent real forms of precoded MSK transmitters.

The upshot of the above equivalence is that, since the conversion from ααα to ααα′ does not change the
statistical (correlation) properties of the sequence, then, based on the Laurent AMP representation, we
conclude that the PSD of precoded MSK is that of a linear modulation with an i.i.d. uncorrelated complex
unbalanced data source and, as such, has a continuous component given by [see Eq. (33)]

SP−MSK (f) |cont = 4p (1− p)Tb
16
π2

cos2 2πfTb
(1− 16f2T 2

b )2 (49)

and a discrete component derived analogously to [9, Chapter 2] as

SP−MSK (f) |discr = (1− 2p)2
∞∑

k=−∞

4
π2

1
(1− 4k2)2 δ

(
f − k

2Tb

)
(50)

where P −MSK denotes precoded MSK. Thus, in summary, the addition of a precoder to the input of an
MSK modulator with unbalanced data input removes the tilt of the MSK spectrum due to the unbalance
and replaces it with a discrete spectral component as is typical of linear modulations.

For GMSK, since each AMP data stream has its own form of “differential encoding” in terms of
the relation between its equivalent symbols and the input bits, any precoder that would be used prior

12



to the GMSK modulator would not compensate all of the data streams. However, since, as previously
mentioned, the first data stream [whose equivalent data symbols are a true complex differential encoding
of the input bits as per the first of the two equations in Eq. (15)] is the dominant contributor to the
overall representation, it seems fortuitous to employ the same precoder as that used for MSK. When this
is done, the first data stream in the AMP representation will now have uncorrelated complex symbols, but
the second (and, for that matter, the other six) components still will have correlated symbols. However,
because of the dominance of the first pulse stream over the others, one would anticipate, analogously to
the MSK behavior described above, the presence of a discrete component in the spectrum and a major
reduction in the tilt of the continuous component due to the input data unbalance.

VI. Numerical Evaluations and Simulation Results

Using MATLAB software to evaluate the analytical results, Figs. 2(a) and 2(b) illustrate the complex
baseband PSD of unbalanced MSK [see Eq. (30)] for p = 0.45 (10 percent unbalance), a typical value
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Fig. 2.  The complex baseband power spectral density of
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of a standard specification [12], and p = 0.20 (60 percent unbalance), which clearly is an extreme case. The
PSD for the conventional balanced-data (p = 0.5) MSK case [see Eq. (33)] is included for comparison in the
latter of the two figures. Superimposed on the calculated PSD curves are numerical results (jagged curve)
obtained from a computer simulation of the true GMSK spectrum, which is tantamount to considering all
eight AMP components. The GMSK transmitter was simulated using the Signal Processing Worksystems
(SPW) software from Cadence Design Systems Inc. and is illustrated in block diagram form in Fig. 3.
Evaluation of the simulated PSDs involves two steps. First, 100 blocks of data, each with 256 symbols,
were formed, and a Bartlett window was applied to each block. The Bartlett window was chosen because
of its low noise floor and the fact that it contributes negligible distortion to the evaluation of the PSDs.
Second, a fast Fourier transform (FFT) was performed on each windowed block, and all 100 FFTs were
summed and normalized to produce the final PSD result.

TSG BLOCK PARAMETERS
SAMPLING RATE, Hz
CARRIER FREQUENCY, Hz
INITIAL CARRIER PHASE, deg
SYMBOL RATE, Hz
Pt /N 0, dB-Hz
PROBABILITY OF ZERO
SNR, dB
SNR

:  ( . . . )
:  0.0
:  0.0
:  256.0
:  39.7531
:  0.55
:  ( . . . )
:  ( . . . )

3-dB NORMALIZED BANDWIDTH (BT PRODUCT)
TAP LENGTH (USED FOR GAUSSIAN FILTER SHAPING)
VCO NORMALIZATION FACTOR

0.25
32
0.25

RANDOM
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WINDOW OUTPUT
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trig
ISL

HOLD n POINTS

Fig. 3.  Computer simulation block diagram of the GMSK transmitter.

We observe from the results in Figs. 2(a) and 2(b) that the asymmetry is such as to increase the side
lobes on one side of the spectrum center and decrease them on the other. However, the rate at which the
side lobes roll off apparently is not changed by the unbalance in the data. The primary effect of the data
unbalance on the PSD is to cause a tilt in its main lobe. Also, for the complementary values p = 0.55 and
p = 0.80, the illustrations in Fig. 2(a) and 2(b) simply would be reversed with respect to the frequency
axis, i.e., the tilt flips with respect to f = 0. Finally, the PSD for the real MSK bandpass waveform
would tilt in one direction around f = fc and in the exact opposite direction around f = −fc. The tilt
for the upper side band around f = fc would be the reverse of that for the complex baseband spectrum
because of the reversal of the frequency axis in the relation between these two spectra, as per Eq. (31).

Before showing the PSD of unbalanced GMSK, we first attempt to justify the assumption of using
only the first two terms in the Laurent AMP representation to model the transmitted signal. Figure 4
illustrates the PSD of GMSK for L = 4 and BTb = 0.25 computed from all 2L−1 = 8 AMP components as
well as from only the first two components. As can be seen from the results, the two are virtually identical
down to a level of about −70 dB. Thus, we suspect that, for unbalanced GMSK, one can anticipate a

14



8 TERMS

2 TERMS

0

-20

-40

-60

-80

-100

-120
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Fig. 4.  A comparison of the complex baseband power spectral
density of balanced GMSK for two and all eight AMP
components.

P
S

D
, d

B

f Tb

similar behavior. To guarantee this assumption, we computed the autocorrelation and cross-correlation
properties of the next (third) pulse sequence, {ã2,n}, as defined in the first equation of Eq. (44) as well as
the corresponding terms that would contribute to the PSD. These results are given in the Appendix and
will be used to identify the level above which the PSD computed from only the first two pulse streams is
sufficient.

Illustrated in Figs. 5(a) and 5(b) is the complex baseband PSD of unbalanced GMSK [see Eqs. (34),
(38), (41), and (42)] for p = 0.45 and p = 0.20 as well as computer simulation results based on a true
GMSK signal. Here again we see that the dominant effect of the data unbalance occurs in the region
of the main lobe. In the limit as p → 1, the power spectrum would become a pair of delta functions at
f = ±1/4Tb, each containing one half the total power. Using the results from the Appendix, the PSD
of Fig. 5(b) was recomputed taking into account the addition of the third pulse stream. The comparison
of these results is illustrated in Fig. 6. As previously anticipated, above a PSD level of −70 dB, the
difference between the two results is undetected.

For the case of unbalanced precoded MSK, the PSD as computed from the superposition (sum) of
Eqs. (49) and (50) is illustrated in Fig. 7(a) for p = 0.55 and in Fig. 7(b) for p = 0.10. Once again, results
obtained from computer simulation are superimposed on these figures and indicate excellent agreement
with the theory.

VII. Conclusion

The Laurent AMP representation of MSK-type modulations is particularly helpful in the evaluation of
the power spectrum of such modulations in the presence of data imbalance. Specifically, the representation
allows obtaining closed-form expressions for the power spectrum that clearly elucidate its partitioning
into components due to the effective AMP pulse shapes and those due to the AMP sequence correlations.
Furthermore, the nature of the PSD distortion produced by the imbalance, i.e., a tilt in the main lobe
and a relative unbalance between the upper and lower side-lobe levels, is easily identifiable from the
mathematical form of the results.
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Appendix

Correlation and Spectral Properties of the Third Pulse Stream
in the AMP Representation of GMSK

From the defining recursion relation for the third pulse stream, {ã2,n}, as given in Eq. (42) together
with the analogous relation for the first and second pulse streams, {ã0,n} and {ã1,n}, as given in Eq. (15),
it is straightforward to show that

Rã2 (l) 4= E
{
ã2,nã

∗
2,n+l

}
=



1, l = 0

−j (1− 2p)3
, l = 1

− (1− 2p)4
, l = 2

[−j (1− 2p)]l , l ≥ 3

, Rã1 (−l) = R∗ã1
(l) (A-1)

and

Rã20 (l) 4= E
{
ã2,nã

∗
0,n+l

}
=



[−j (1− 2p)]l+1
, l ≥ 0

(1− 2p)2
, l = −1

j (1− 2p)2
, l = −2

[j (1− 2p)]−(l+1)
, l ≤ −3

, Rã02 (−l) = R∗ã20
(l) (A-2)

Rã21 (l) 4= E
{
ã2,nã

∗
1,n+l

}
=



[−j (1− 2p)]l , l ≥ 2

−j (1− 2p)3
, l = 1

(1− 2p)2
, l = 0

j (1− 2p) , l = −1

− (1− 2p)4
, l = −2

[j (1− 2p)]−l , l ≤ −3

, Rã12 (−l) = R∗ã21
(l) (A-3)

The corresponding components needed to compute the PSD given in Section III are as follows:

S22 (f ; p) =
1
Tb
|P2 (f)|2 4p (1− p)

[
1

2 (1− 2p) (1 + sin 2πfTb) + 4p2

+ 2(1− 2p) sin 2πfTb +2(1− 2p)2 cos 4πfTb
]
, P2 (f) 4= F {C2 (t)} (A-4)
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S20(f ; p) = 8p(1− p) Re
{[(

1
2(1− 2p)(1 + sin 2πfTb) + 4p2

− 1
)
ej2πfTb

−j(1− 2p)ej4πfTb
] 1
Tb
P0(f)P ∗2 (f)

}
(A-5)

S21 (f ; p) = 8p (1− p) Re
{[

[j (1− 2p)] e−j2πfTb +
1

2 (1− 2p) (1 + sin 2πfTb) + 4p2
− 1

+ (1− 2p)2
ej4πfTb

] 1
Tb
P1 (f)P ∗2 (f)

}
(A-6)
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